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Abstract

In this paper, visco-elastic boundary layer flow and heat transfer over a stretching sheet in presence of viscous dissipation and non-
uniform heat source have been discussed. Analytical solutions of highly non-linear momentum equation and confluent hypergeometric
similarity solution of heat transfer equations are obtained. Here two types of different heating processes are considered namely (i) pre-
scribed surface temperature (PST) and (ii) prescribed wall heat flux (PHF). The effect of various parameters like visco-elastic parameter,
Eckert number, Prandtl number, and non-uniform heat source/sink parameter on temperature distribution are analyzed and effect of all
these parameters on wall temperature gradient and wall temperature are tabulated and discussed.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Sakiadis [1,2] has initiated the study of boundary layer
problem assuming velocity of a boundary sheet as con-
stant. A great deal of literature is available on the two-
dimensional visco-elastic boundary layer flow over a
stretching surface where the velocity of a stretching surface
is assumed linearly proportional to the distance from a
fixed origin. Because of numerous application of visco-elas-
tic fluids in several industrial manufacturing processes have
led renewed interest among researchers to investigate visco-
elastic boundary layer flow over a stretching plastic sheet.
(Rajagopal et al. [3,4], Dandapat and Gupta [5], Rollins
and Vajravelu [10], Andersson [6], Lawrence and Rao [7],
Char [8], Rajagopal and Gupta [9], Rao [11], Bhattacharya
et al. [13] and Vajravelu and Rollins [14].) Some of the
0017-9310/$ - see front matter � 2006 Elsevier Ltd. All rights reserved.

doi:10.1016/j.ijheatmasstransfer.2006.08.010

* Corresponding author. Tel.: +91 8472 245633.
E-mail address: msabel2001@yahoo.co.uk (M.S. Abel).
typical applications of such study are polymer sheet extru-
sion from a dye, glass fiber and paper production, drawing
of plastic films etc.

In reality most liquids are non-Newtonian in nature,
which are abundantly used in many industrial applications,
such as in the manufacture of plastic films and artificial
fibers, aerodynamic extrusion of plastic sheets, cooling of
metallic sheets in a cooling bath, crystal growing, liquid
film condensation process, continuous polymer sheet extru-
sion, heat treated materials traveling between a feed roll,
wind up roll or on a conveyer belt, geothermal reservoirs
and petroleum industries.

In view of this, the study of visco-elastic boundary layer
flow problem has been further channelised to non-Newto-
nian fluid flow. Review of literature reveals that Rajagopal
et al. [3] have considered the study of visco-elastic second
order fluid flow over a stretching sheet by solving boundary
layer equations numerically, this work does not take into
account of the heat transfer phenomenon. Siddappa and
Abel [25] have considered similar flow analysis with out
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heat transfer in the flow of non-Newtonian fluid of
Walters’ liquid. Bujurke et al. [26] have presented work
to analyze momentum and heat transfer phenomena in
visco-elastic second order fluid over a stretching sheet with
internal heat generation and viscous dissipation. An exact
analytical solution of MHD flow of a visco-elastic liquid
of Walters’ liquid B past a stretching sheet has been pre-
sented by Andersson [6]. Numerous works are also avail-
able in the literature of viscoelastic boundary layer flow
and heat transfer phenomena ([16–18,20–24,27,31,32]) but
only with temperature dependent heat source/sink is con-
sidered in their analysis. Vajravelu and Nayfeh [15] studied
heat transfer on a vertical sheet in a heat generating
(absorbing) fluid.

Postelnicu et al. [28] examined the effect of variable vis-
cosity on forced convection flow past a horizontal flat plate
in a porous medium with internal heat generation, but in
heat generation part they considered only space dependent
heat source. Again Postelnicu et al. [29] studied the free
convection boundary layer over a vertical permeable plate
in a porous medium with internal heat generation, in this
authors considered only space dependent heat generation.
Postelnicu et al. [30] worked on the similarity solutions of
free convection boundary layers over vertical and horizon-
tal surfaces in porous media with internal heat generation,
again here also the authors considered only space depen-
dent heat generation. Postelnicu et al. [28–30] in these all
works considered only viscous flow and space dependent
internal heat generation. But Abo-Eldahab and El Aziz
[12] considered the study on Blowing/Suction effect on
hydromagnetic heat transfer by mixed convection from
an inclined continuously stretching surface with internal
heat generation/absorption, but the work considered both
the space and temperature dependent heat source/sink, in
a viscous flow.

In above referred literature the effect of non-uniform
heat generation on heat transfer phenomenon in visco-elas-
tic boundary liquid flow is excluded from the analysis. In
non-Newtonian fluid flows like Walters’ liquid B, the effect
of frictional heating plays an important role in heat trans-
fer processes. Hence in this paper, we propose to investi-
gate the non-Newtonian visco-elastic boundary layer flow
of Walters’ liquid B past a stretching sheet, taking account
of non-uniform heat source (Abo-Eldahab and El Aziz
[12]) and frictional heating. Heat transfer characteristics
are examined for two different kinds of boundary condi-
tions, namely (i) when wall is maintained with prescribed
power law temperature and (ii) when the wall is maintained
with power law heat flux. Analytical solution for the flow
and heat transfer are obtained in the form of confluent
hyper geometric function (Kummer’s function).

2. Mathematical formulation and solution

Consider the steady two-dimensional laminar flow of an
incompressible visco-elastic fluid (obeying Walter’s model)
in the presence of a semi-infinite, impermeable flat sheet
coinciding with the plane y = 0, the flow being confined
to y > 0. Two equal and opposite forces are applied along
x-axis, so that the surface is stretched, keeping the origin
fixed. Under the usual boundary layer assumptions, the
basic boundary layer equations governing the flow of Walt-
ers’ Liquid B can be written as
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where x and y represent horizontal and transverse direc-
tions respectively, and u,v, respectively, are the velocities
along x and y directions. t is the kinematic viscosity, k0

is the co-efficient of viscoelasticity. In deriving these equa-
tions, it is assumed, in addition to the usual boundary layer
approximations, that the contribution due to the normal
stress is of the same order of magnitude as the shear stress.
Hence both t and k0 are of the order of the square of the
boundary layer thickness.

The boundary conditions are

uwðxÞ ¼ bx; v ¼ 0; at y ¼ 0;

u! 0; as y !1:
ð3Þ

with b > 0, this is known as stretching rate. Eqs. (1) and (2),
subjected to boundary condition (3), admit self-similar
solution in terms of the similarity function f and the simi-
larity variable g defined by
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where suffix denotes the derivative w.r.t g. Clearly u and v

as defined above satisfy the continuity equation (1) and (2)
becomes
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where k1 ¼ k0b
t , is the visco-elastic parameter.

Similarly boundary conditions (Eq. (3)) become,

fgðgÞ ¼ 1; f ðgÞ ¼ 0 at g ¼ 0;

fgðgÞ ! 0; as g!1;
ð6Þ

It is to be noted that the boundary condition Eq. (6) is not
sufficient to solve Eq. (5) uniquely. So making use of
boundary condition Eq. (6), Rajagopal et al. [4] obtained
the corresponding solution of Eq. (5), which is an exact
solution of Eq. (5), satisfying the boundary conditions (6)
and is given by

f ðgÞ ¼ 1� e�ag

a
; with a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1
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Obviously, 0 < k1 < 1.
Therefore, the velocity components are
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In the Section 3 we consider the heat transfer in the consid-
ered flow.

3. Heat transfer

Since the fluid we considered in the analysis is visco-
elastic, the energy will be stored in the fluid by means of
frictional heating due to viscous dissipation. So we take
account of this. However, we assume that fluid possesses
strong viscous property than elastic property. Also the
effect of elastic deformation terms might not be sufficient
as the momentum boundary layer equation is valid at
low shear rate and small values of elastic parameter
[3,5,18]. So in view of this we may neglect the contribution
of heat energy due to elastic deformation. Hence the gov-
erning boundary layer heat transport equation in the pres-
ence of viscous dissipation and non-uniform internal heat
generation/ absorption for two-dimensional flow is

qcp u
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where k is the thermal conductivity, q is the density, T is
the temperature, cp is the specific heat at constant pressure
l is the viscosity and q000 is the space- and temperature-
dependent internal heat generation/absorption (non-
uniform heat source/sink) [12] which can be expressed in
simplest form as

q000 ¼ kuwðxÞ
xt

� �
A � ðT w � T1Þf 0ðgÞ þ B�ðT � T1Þ½ �; ð10Þ

where A* and B* are parameters of space- and temperature-
dependent internal heat generation/absorption. It is to be
noted that A* > 0 and B* > 0 correspond to internal heat
generation while A* < 0 and B* < 0 correspond to internal
heat absorption. The solution of Eq. (9) depends on the
nature of the prescribed boundary conditions. Two types
of heating processes are considered as discussed below.

3.1. Case A: Prescribed power law surface temperature

(PST case)

For this heating process, the prescribed surface temper-
ature is assumed to be a quadratic function of x and is
given by

T ¼ T w ¼ T1 þ A
x
l

� �2

at y ¼ 0;

T ! T1 as y !1;
ð11Þ

where Tw is the temperature of the wall and T1 is the tem-
perature out side the dynamic region. The constant A de-
pends on the thermal properties of the liquid and l ¼

ffiffi
t
b

p
is a characteristic length. We now define a dimensionless
scaled temperature as

hðgÞ ¼ T � T1
T w � T1

; ð12Þ

where T � T1 ¼ A x
l
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Eq. (9) on using Eqs. (11) and (12) can be transformed
to the following equation

hggðgÞ þ Prf ðgÞhgðgÞ � ð2PrfgðgÞ � B�ÞhðgÞ
¼ �ðEPrf 2

gg þ A�fgÞ; ð13Þ

where E ¼ b2l2

ACp
(Eckert number), Pr ¼ lCp

k (Prandtl number).

Using Eq. (12) in Eq. (13) the boundary conditions read
as

hðgÞ ¼ 1 at g ¼ 0;

hðgÞ ! 0 as g!1:
ð14Þ

The solution of Eq. (13), subject to boundary conditions
(14), can be obtained in terms of hypergeometric Kum-
mer’s function [19] as
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The non-dimensional wall temperature gradient derived
from Eq. (15) reads as
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3.2. Case B: Prescribed power law surface heat flux

(PHF case)

The power law heat flux on the wall surface is consid-
ered to be a quadratic power of x in the form

� k
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x
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at y ¼ 0;

T ! T1 as y !1;
ð17Þ

where D is a constant, k is the thermal conductivity and
l is as defined earlier. We now define a dimensionless,
scaled temperature g(g) as

gðgÞ ¼ T � T1
T w � T1

; ð18Þ
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Fig. 1(a). Effect of visco-elasticity (k1) on temperature distribution in PST
case.

M.S. Abel et al. / International Journal of Heat and Mass Transfer 50 (2007) 960–966 963
Using Eqs. (17) and (18), (9) can be written in terms of g as

gggðgÞ þ Prf ðgÞggðgÞ � ð2PrfgðgÞ � B�ÞgðgÞ
¼ �ðEPrf 2
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(Eckert number) and the boundary con-
ditions take the form

ggðgÞ ¼ �1 at g ¼ 0;

gðgÞ ! 0 as g!1;
ð21Þ

with f(g) as defined earlier in the PST case. The solution of
Eq. (20), subject to the boundary condition (21), can be
obtained in terms of hypergeometric Kummer’s function
[19] in the form
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where a0,b0,c2 and c3 are as defined earlier in the PST case
and c4 is given by
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Fig. 1(b). Effect of visco-elasticity (k1) on temperature distribution in
PHF case.
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The non-dimensional wall temperature derived from Eq.
(22) reads as

gð0Þ ¼ c4M
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Now we proceed to the discussion of results of the under-
taken study.

4. Results and discussion

A boundary layer problem for momentum and heat
transfer with space and temperature dependent heat source
in viscoelastic fluid flow over a stretching sheet is examined
in this paper. The boundary layer equations of momentum
and heat transfer are solved analytically and the different
analytical expressions are obtained for non-dimensional
temperature profiles for two general cases of boundary
conditions namely (i) PST Case (ii) PHF Case. Explicit
analytical expressions are also obtained for dimensionless
temperature gradient h0(0) and g(0). Numerical computa-
tions of results are demonstrated in Figs. 1–5 for PST
and PHF cases respectively. The parameters that arise in
the study are viscoelastic parameter k1, Prandtl number
Pr, Eckert number E, space-dependent heat source/sink
parameter A* and temperature-dependent heat source/sink
parameter B*. The parameters k1, E, and Pr are well
known. The parameters A* and B* are not so large quanti-
ties. We now proceed with the discussion of results.

Fig. 1(a) is drawn for temperature profile h(g) versus g
from the sheet, for the PST case, for different values of
k1 and Fig. 1(b) is the graphical representation of the tem-
perature profile g(g) versus g for the PHF case, for different
values of k1. From these figures it is apparent that the tem-
perature is unchanged at the wall with the change of phys-
ical parameters in PST case and we also observe that the
temperature increases with increase in the value of k1, in
both PST and PHF cases.

This is due to the fact that an increase of visco-elastic
normal stress gives rise to thickening of thermal boundary
layer.

Figs. 2(a) and 2(b) depict the temperature profiles h(g)
and g(g) versus g from the sheet, for different values of
Pr. We infer from these figures that temperature decreases
with increase in Pr which implies viscous boundary layer is
thicker than the thermal boundary layer. Temperature in
both PST and PHF cases asymptotically approaches to
zero in free stream region.
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Fig. 4(a). Effect of non-uniform heat source/sink parameter (A*) on
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The Figs. 3(a) and 3(b) show the temperature distribu-
tion h( g) and g(g) versus g from the sheet, for different val-
ues of Eckert number (E) for both PST and PHF cases,
respectively. By analyzing the graphs it reveals that the
effect of increasing values of E is to increase the tempera-
ture distribution in flow region in both PST and PHF cases.
This is due to the fact that heat energy is stored in the
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Table 1
Value of wall temperature gradient h0(0) (for PST Case) and wall temperature

E k1 Pr A*

0.0 0.2 4.0 0.3
0.02
0.5

0.02 0.0 4.0 0.3
0.1
0.2

0.02 0.2 3.0 0.3
3.5
4.0

0.02 0.2 4.0 �0.3
0.0
0.3

0.02 0.2 4.0 0.3
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liquid due to the frictional heating. The effect of increasing
E, is to enhance the temperature at any point and this is
true in both cases.

Figs. 4(a) and 4(b), are graphs of temperature profiles
h(g) and g(g) versus distance g, for different values of A*.
For A* > 0, it can be seen that the thermal boundary layer
generates the energy, and this causes the temperature h(g)
and g(g) of the fluid to increase with increase in the value
of A* > 0 (heat source), where as for A* < 0 (absorption)
the temperature h(g) decreases with increase in the value
of A*.

Figs. 5(a) and 5(b) depict the temperature profiles h(g)
and g(g) versus distance g, for different values of B*. The
explanation on the effect of B* is similar to that given for
A*.

The heat transfer phenomena is also analyzed from the
numerical results of two physical parameters, namely (i)
wall temperature gradient h0(0) in PST Case and (ii) wall
temperature g(0) in PHF case and the same are presented
in Table 1. Analyzing this table reveals that the effect of
increasing the value of k1 is to increase the wall tempera-
ture gradient h0(0) in PST Case and wall temperature g(0)
in PHF Case. The effect of Pr is to decrease h0(0) and
g(0) significantly. The effect of E (Eckert number) is to
decrease h0(0) and g(0) and increasing the value of A* and
B*(negative to positive) is clearly to increase both h0(0)
and g(0). On comparison of temperature distribution of
PST and PHF, it is apparent that the PST boundary
condition succeeds in keeping viscoelastic cooling liquid
warmer than in case when PHF boundary condition is
applied. It may be therefore be inferred that the PHF
boundary condition is better suited for faster cooling of
stretching sheet. The results of PST and PHF cases infer
that the boundary layer temperature is quantitatively
higher in PST case as compared to PHF case and the
g(0) (for PHF Case), for different values of E, k1, Pr, A* and B*

B* PST Case-h0(0) PHF Case-g(0)

0.3 2.65822 0.41832
2.59404 0.426306
1.05386 0.617967

0.3 2.68986 0.406411
2.65169 0.414147
2.59404 0.426306

0.3 1.71759 0.652451
2.29203 0.488533
2.59404 0.426306

0.3 2.97909 0.291238
2.78657 0.358772
2.59404 0.426306

�0.3 2.73959 0.401513
0.0 2.66907 0.4131630
0.3 2.59404 0.426306
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results are in tune with what happens in regions away from
the sheet.
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